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Type 2 diabetes mellitus (T2DM) is a global epidemic that af-
fects millions of people and places a significant burden on 

healthcare systems worldwide.[1–3] Addressing this disease has 
proven challenging due to its multifactorial nature; its develop-
ment is associated with an intricate interplay among genetic, 
lifestyle, and environmental factors and is compounded by nu-
merous comorbidities.[4–6] Despite the strides made in diabetes 
research and medical innovations, a definitive treatment for 
T2DM has remained elusive, necessitating ongoing exploration 
of novel therapeutic avenues.[2, 7] Amid this persistent challenge, 
a promising frontier has emerged in the form of sodium-glucose 
co-transporter 2 (SGLT2) inhibitors, which represent a paradigm 
shift in T2DM management. SGLT2 inhibitors modulate renal glu-
cose reabsorption and have demonstrated remarkable efficacy in 

improving glycemic control addressing renal and cardiovascular 
risk factors.[8, 9] However, the story does not end with their direct 
impact on glucose metabolism; an intriguing and relatively un-
charted path is revealed when we consider the interplay between 
SGLT2 inhibitors and the human gut microbiota.

Amid the quest for novel therapeutic interventions, attention has 
increasingly turned to the human gut microbiota, a dynamic and 
intricate community of microorganisms residing in the gastroin-
testinal tract. From 2013 to 2017, there was a notable surge in 
the number of publications devoted to gut microbiota studies—
a staggering 12,900 publications.[10] This surge accounted for 
a remarkable four-fifths of all research conducted on this topic 
over the preceding 40 years and reflected a paradigm shift and an 
expansive exploration of uncharted territory in microbiome re-
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search.[10] This heightened interest underscores a profound com-
mitment among researchers to delve into the untapped potential 
of manipulating the gut microbiome, not only for the treatment 
of various diseases but also to unravel the intricate ways in which 
pharmaceutical agents, such as SGLT2 inhibitors, can modulate 
and interact with the microbiota.

As the scientific community directs its focus toward deciphering 
the complex relationship between the gut microbiota and T2DM 
[11, 12], the exploration of how SGLT2 inhibitors may impact this mi-
crobial community represents a pivotal intersection in the pur-
suit of comprehensive and effective therapeutic strategies. This 
review delves into the evolving landscape of research surround-
ing the interactions between SGLT2 inhibitors and the gut micro-
biota, providing insight into potential mechanisms, metabolic 
implications, and therapeutic opportunities that may redefine 
our approach to managing T2DM.

The Gut Microbiome: A Hidden Universe Within Us 

The human gut harbors a complex community of trillions of mi-
croorganisms, collectively known as the gut microbiome.[13, 14] 
This thriving microecosystem is not just a passive bystander; it 
plays an active role in maintaining health.[13] Over the past de-
cade, extensive research has revealed the profound influence of 
the gut microbiome, which extends far beyond its primary role 
in digestion.[13, 15, 16] The resident microorganisms collaborate not 
only with each other but also with other bodily systems in com-
plex ways.[16, 17] This collaborative activity encompasses crucial 
functions, including aiding in food breakdown, facilitating nutri-
ent absorption, metabolizing bile acids, maintaining intestinal 
barrier integrity, regulating energy balance and the immune sys-
tem, as well as influencing drug metabolism (Fig. 1).

The gut microbiota actively participates in the metabolism of 
dietary components, producing short-chain fatty acids (SCFAs) 
and modulating energy extraction from indigestible polysac-
charides.[18, 19] A harmonious interaction between the gut mi-
crobiome and the immune system is essential for maintaining a 
robust and well-balanced immune response.[10, 20, 21] Commensal 
bacteria help educate the immune system to tolerate beneficial 
microbes and elicit an appropriate response against pathogens. 
This immunomodulatory role of the gut microbiome is essential 
for preventing inappropriate inflammatory reactions and autoim-
mune diseases.[20, 21] Moreover, the gut microbiota is now recog-
nized as a vital partner of human cells, as it is intricately linked 
to nearly all aspects of human physiology.[10] This connection 
extends to metabolic processes with the gut microbiota influ-
encing the host’s metabolism and energy regulation.[19, 21, 22] Gut 
microbes contribute to the fermentation of undigested dietary 
components, producing metabolites (e.g., SCFAs) that impact the 
host’s energy balance and insulin sensitivity.[19, 23] Imbalances in 
the gut microbiota have been associated with metabolic disor-
ders, including obesity and T2DM.[22, 24] Certain bacteria within the 
gut microbiome are capable of synthesizing vitamins and other 
essential nutrients, such as B12 and folate, and thus contribute to 
the overall nutritional status of the host.[21, 25, 26] Additionally, the 
gut microbiome plays a crucial role in the maintenance of the in-
testinal barrier, which prevents the translocation of harmful sub-
stances from the gut into the bloodstream.[20, 21, 26, 27] This barrier is 
also crucial for the prevention of inflammation and for maintain-
ing overall gut health.[20, 21, 27] Furthermore, the gut microbiota can 
impact drug metabolism through various mechanisms, resulting 
in inter-individual differences in drug efficacy and toxicity.[28]

It is important to note that the composition and diversity of the 
gut microbiome can vary significantly from person to person, in-
fluenced by a complex interplay of factors including geography, 
genetics, dietary habits, medications, lifestyle, and environmen-
tal conditions.[29, 30]

The complex communication network that links the gut micro-
biota to various organs plays a pivotal role in the diverse ways 
that the gut microbiota impacts host health. Through intricate 
signaling pathways, such as the gut–brain and gut–kidney axes, 
the gut microbiome communicates with distant organs.[13, 20, 21] 
This communication involves signaling metabolites, including li-
popolysaccharide (LPS), bile acids, SCFAs, and trimethylamine[10, 

13, 20, 21, 26] and ultimately influences the host’s overall health (Fig. 2).

Microbial diversity shifts in T2DM and implications for metabolic 
dysfunction. Numerous studies have highlighted that the com-
position and abundance of gut microbial communities vary be-
tween individuals with T2DM and those with normoglycemia.[31–34] 
Noteworthy changes include a decrease in butyrate-producing 
bacteria, such as Faecalibacterium prausnitzii and Roseburia spp., 
depletion of the genera Akkermansia and Clostridium, and in-
creases in the Ruminococcus and Streptococcus genera observed 
in T2DM patients.[31, 34–37] Reductions in Akkermansia muciniphila 
(A. muciniphila), a mucin-degrading bacterium associated with 
improved metabolic health, have been observed in T2DM pa-
tients, suggesting a potential role in the disease pathogenesis.[38] 

Figure 1. The multifaceted functions that the gut microbiota contrib-
ute to in a collaborative manner. Created with BioRender.com.
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Simultaneously, an increase in opportunistic pathogens, such as 
Escherichia coli, has been observed, which potentially exacerbates 
the inflammatory milieu associated with T2DM.[39] The Firmicutes 
to Bacteroidetes ratio, a widely recognized marker of gut micro-
biota composition, is frequently altered in T2DM patients.[31, 36, 37] 
Although the significance of this ratio remains under investiga-
tion, studies have reported an elevated Firmicutes to Bacteroide-
tes ratio in T2DM patients that correlates with insulin resistance 
and metabolic dysfunction.[31, 36, 37]

These observed reductions in microbial diversity and shifts in the 
relative abundance of specific taxa in T2DM patients suggest a 
potential link between gut dysbiosis and metabolic dysfunction.
[23, 37, 38] The altered microbial profile is hypothesized to contribute 
significantly to inflammation, impair gut barrier function, and in-
fluence host metabolism—which are all key factors in the patho-
physiology of T2DM.[22–24] For example, metabolites produced by 
gut microbes, such as SCFAs, secondary bile acids, and indoles, 
have been implicated in the regulation of insulin sensitivity and 
glucose metabolism.[19, 20, 24, 40] Particularly, SCFAs, with butyrate 
taking a prominent role, contribute to maintaining the integ-
rity of the gut barrier and exhibit anti-inflammatory effects; thus, 
they potentially alleviate inflammation associated with T2DM.[19, 

23, 38, 40] Conversely, the decrease in butyrate-producing bacteria 
observed in T2DM leads to the disruption of the integrity of the 
gut barrier and “leaky gut,” and it is also associated with chronic 
low-grade inflammation.[20, 22, 24, 38]

Furthermore, the impact that the gut microbiota has on lipid me-
tabolism in T2DM adds a significant layer to the complex T2DM–
gut microbiota relationship.[37, 41] The gut microbiome, through its 
engagement in lipid metabolism, actively influences lipid absorp-

tion, synthesis, and storage.[42] Thus, the gut dysbiosis observed 
in T2DM may contribute to disturbances in lipid metabolism 
and thereby exacerbate the overall metabolic dysregulation as-
sociated with this condition.[23, 37, 38, 41] This multifaceted interplay 
between gut dysbiosis, insulin sensitivity, metabolic dysfunction, 
and lipid metabolism underscores the intricate nature of the rela-
tionship between the gut microbiota and T2DM.

The Gut Microbiota and Antidiabetic Medications: 
Bidirectional Interactions in T2DM Treatment

The bidirectional relationship between antidiabetic medications 
and the gut microbiota is complex and has far-reaching impli-
cations for T2DM treatment. Ongoing research, encompassing 
in vitro and animal studies, endeavors to elucidate the intricate 
mechanisms that underlie drug–microbe interactions and their 
potential consequences for drug efficacy and safety.[43, 44] While 
the adverse effects of antibiotics on the gut microbiome are 
well-acknowledged,[45, 46] recent insights underscore that non-
antibiotic drugs can also instigate substantial changes in gut 
microbiota composition.[44, 47] Moreover, individual drugs, drug 
combinations, and the cumulative effects of drugs have been 
shown to alter the metabolome and microbiome and ultimately 
influence gut health.[43, 44, 47] This bidirectional drug–microbe rela-
tionship extends to antidiabetic medications, adding a dynamic 
layer to T2DM treatment.

Antidiabetic medications, from oral hypoglycemic agents to in-
jectable therapies, have been shown to influence the composi-
tion and function of the gut microbiota.[48] For instance, a recent 
systematic review demonstrated that the interplay between the 
gut microbiome and glucose-lowering medications is a key fac-
tor that contributes to the variability observed in T2DM progres-
sion and treatment outcomes.[49] This relationship is bidirectional 
and can have both positive and negative consequences for T2DM 
management, which underscores the imperative for personal-
ized treatment approaches.[48, 49] On one hand, enzymatic activity 
in the gut microbiome can influence the metabolism and efficacy 
of glucose-lowering drugs. On the other hand, these drugs can 
alter the composition and function of the gut microbial commu-
nity, thereby reshaping the gut microenvironment and impacting 
microbial metabolism.[49]

The most robust evidence of the impact of antidiabetic medica-
tions on the gut microbiota composition has been derived from 
studies with metformin.[50–52] Metformin usage has been demon-
strated to foster the proliferation of various healthy bacteria that 
produce SCFAs.[50, 51] In a double-blinded randomized controlled 
trial conducted by Wu et al., treatment-naïve T2DM patients 
were assigned to receive either metformin or a placebo for four 
months.[53] The results indicated that receiving metformin for four 
months, compared to the placebo, increased the abundance of 
SCFA-producing bacteria such as Blautia, Bacteroides, Butyricoc-
cus, Bifidobacterium, Prevotella, Megasphaera, and Butyrivibrio 
spp., as well as Proteobacteria and Firmicutes genera.[53] Metfor-
min has also been shown to increase mucin-degrading bacteria 
such as A. muciniphila.[51, 52, 54]

Figure 2. The gut microbiota’s communication network with the 
body’s organs. Created with BioRender.com.

LPS: lipopolysaccharide; SCFA: short-chain fatty acids.
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Incretin-based therapies, which involve glucagon-like peptide-1 
(GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) 
inhibitors, represent another dimension to the intricate relation-
ship between antidiabetic medications and the gut microbiome, 
potentially influence the gut microbiota composition and impact 
metabolic outcomes.[50, 51, 55] For example, the GLP-1 receptor ago-
nist liraglutide has the capacity to reduce weight by modifying the 
structure of the gut microbiota.[56] Similarly, DPP-4 inhibitors have 
been shown to affect the composition of the gut microbiota.[50, 51, 

55] Notably, the administration of sitagliptin led to an increase in 
24 genera, with 75% being Bacteroidetes, while 87.5% of the de-
creased genera were Firmicutes, resulting in an elevated Bacte-
roidetes to Firmicutes ratio.[57] Despite these intriguing findings, a 
12-week randomized placebo-controlled trial involving adults with 
T2DM failed to reveal any discernible impact on the composition 
of the intestinal microbiota from either liraglutide or sitagliptin.[58] 
This absence of observable changes underscores the complexity 
and variability in the interactions between antidiabetic medica-
tions and the gut microbiome. Further examination of the specific 
mechanisms involved and potential long-term impacts, and the 
identification of interventions, will undoubtedly play a pivotal role 
in shaping the future landscape of T2DM management.

SGLT2 Inhibitors and the Gut Microbiota: 
A Promising Connection

SGLT2 inhibitors are a class of oral glucose-lowering agents used 
to treat T2DM.[59, 60] They inhibit the reabsorption of glucose in the 
kidneys, which increases the urinary excretion of glucose, and 
thus improve glycemic control.[60, 61] Beyond their primary func-
tion of managing blood glucose levels, SGLT2 inhibitors offer 
additional advantages. These include inducing weight loss, low-
ering blood pressure, decreasing the likelihood of heart failure-
related hospitalizations, reducing cancer risk, and providing car-
diovascular and renal protection (Fig. 3).[62–65] 

Although the exact mechanisms responsible for these multiple 
benefits remain unclear, some evidence suggests that these pro-
tective effects may be influenced in part by the gut microbiota.[59–61]

In animal studies, several SGLT2 inhibitors have been shown to 
induce changes in the composition of the gut microbiota. For ex-
ample, in experiments with mice with T2DM treated with dapa-
gliflozin, minor positive changes in their gut microbiota were ob-
served.[66] These changes included a decrease in Oscillospira spp. 
and a shift toward a more favorable Firmicutes to Bacteroidetes 
ratio, as well as an increase in A. muciniphila.[66] Similarly, in dia-
betic mice fed butyrate, a dapagliflozin-treated group showed a 
trend toward an improved Firmicutes to Bacteroidetes ratio, a 
decrease in Adlercreutzia spp. and Alistipes spp., and an increase 
in Streptococcus spp.[67] More recently, a study in db/db mice 
demonstrated the protective effect of dapagliflozin on diabetic 
kidney disease, which appears to be associated with a dynamic 
improvement in gut microbiota over time.[59] This improvement 
may be related to the effects of dapagliflozin on the bile acid pool 
and its antioxidant activity.

Empagliflozin has also been demonstrated to ameliorate T2DM-
related diabetic nephropathy by altering the gut microbiota by 
reducing LPS-producing bacteria and increasing SCFA-producing 
bacteria in T2DM mice.[61]

Furthermore, canagliflozin significantly enhanced the production 
of SCFAs and reduced plasma levels of p-cresyl sulfate and indoxyl 
sulfate in the intestines of animal models.[68] Luseogliflozin treat-
ment was also found to increase the quantity of intestinal bacte-
ria involved in the synthesis of SCFAs, leading to improved amino 
acid metabolism in db/db mice.[69] To further illustrate the impact 
of SGLT2 inhibitors on the gut microbiota, Table 1 provides a sum-
mary of the findings on the alterations induced by various SGLT2 
medications generated in animal studies and clinical trials.

While preclinical studies have shown promise in terms of the 
impact of SGLT2 inhibitors on the fecal microbiome, the limited 
clinical studies that have been conducted in this area have pro-
duced mixed results. In a three-month, randomized, open-label 
trial with 76 treatment-naïve T2DM patients, empagliflozin dem-
onstrated substantial benefits, including improvements in glu-
cose metabolism, reductions in cardiovascular risk factors, and 
notable alterations in the gut microbiota.[72] These changes were 
associated with an increase in beneficial SCFA-producing bacteria 
and a decrease in harmful bacteria, such as Escherichia–Shigella, 
Bilophila, and Hungatella spp. A study conducted with Japanese 
T2DM patients found that treatment with an SGLT2 inhibitor was 
associated with an overall increase in the prevalence of balance-
regulating bacteria, including SCFA-producing bacteria.[74] How-
ever, conflicting findings also exist: another double-blind ran-
domized trial found no significant impact on microbial diversity 
or composition in T2DM patients.[75]

Despite these inconclusive results, the preliminary findings offer 
hope for people who are facing challenges in managing T2DM, 
creating the possibility of tailored treatment options. This new-
found understanding of the role that the gut microbiota plays 
raises several questions. How exactly do SGLT2 inhibitors affect 
the gut microbiota, and can we exploit these changes to improve 
treatment outcomes in T2DM? Is it possible to optimize SGLT2 in-
hibitors to specifically target the detrimental microbial changes 

Figure 3. The multifaceted benefits of sodium-glucose co-transport-
er 2 (SGLT2) inhibitors.[62-65] Created with BioRender.com.
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associated with T2DM? Further research is needed to fully explore 
the complex interplay between SGLT2 inhibitors and the gut mi-
crobiota. However, as we continue to explore this fascinating area 
of research, we must remember that we are still in the very early 
stages of understanding the full potential of the gut microbiome 
in the treatment of T2DM. It will take years of dedicated research 
and clinical trials to determine which interventions are the safest 
and most effective. In a world where T2DM is a growing health 
crisis, any promising research approach deserves attention and 
support.

Conclusion
In the ongoing fight against the global T2DM epidemic, it is 
imperative to explore new frontiers in search of innovative 
solutions. The gut microbiome stands out among the un-
explored areas—existing research has already provided in-
sights that could revolutionize the prevention and manage-
ment of T2DM. SGLT2 inhibitors have multifaceted benefits 
beyond glycemic control, such as weight loss, blood pres-
sure reduction, and cardiovascular and renal protection; 
their potential influence on the gut microbiota remains a 

dynamic and evolving area of research. Current evidence 
from preclinical studies suggests that various SGLT2 inhibi-
tors induce positive changes in the composition of the gut 
microbiota, potentially contributing to their therapeutic ef-
fects. However, clinical studies have yielded mixed results, 
underscoring the complexity of this interaction. Substan-
tial research efforts are needed to elucidate the intricate 
mechanisms involved and optimize interventions for clini-
cal use. While the prospect of tailored treatment options 
offers hope for T2DM patients, it is essential to approach 
existing findings with caution and acknowledge that this 
research field is in its early stages. The outcomes of rigorous 
clinical trials and dedicated research studies will be pivotal 
in determining the safety and efficacy of T2DM interven-
tions that target the gut microbiota and involve SGLT2 in-
hibitors.
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Table 1. Impact of sodium-glucose co-transporter 2 (SGLT2) inhibitors on the gut microbiota in type 2 diabetes mellitus (T2DM)

Study Subjects Key findings

   Canagliflozin

Wang, et al.[70] Male C57BL/6J mice An increase in the Firmicutes to Bacteroidetes ratio (from 230% to 98%) and the 
   relative abundance of Olsenella, Alistipes, and Alloprevotella spp., and a decrease in 
   the abundance of Helicobacter and Mucispirillum spp.
Wang, et al.[71] 21 treatment-naïve An increase in the relative abundance of SCFA-producing bacteria, particularly 
  T2DM patients Lachnospiraceae, Bacteroides, and Lachnospiraceae spp.

   Luseogliflozin

Hata, et al.[69] Male db/db mice An increase in the abundance of intestinal SCFA-producing bacteria, leading to 
   improved amino acid metabolism

   Empagliflozin

Deng, et al.[61] Male C57BL/6J mice A reduction in LPS-producing bacteria and an increase in SCFA-producing bacteria
Deng, et al.[72] 76 treatment-naïve patients An increase in sphingomyelin, but a reduction in glycochenodeoxycholate,  
  with T2DM and risk factors cisaconitate, and uric acid; an elevated level of SCFA-producing bacteria; and a 
  for CVD reduced level of harmful bacteria, including Escherichia–Shigella, Bilophila, and 
   Hungatella spp.

   Dapagliflozin

Wu, et al.[59] Male db/db mice An increase in SCFA production; the agent showed anti-inflammatory properties 
   and mitigated kidney damage
Oh, et al.[67] Male db/db mice A decreased Firmicutes to Bacteroidetes ratio, a reduction in Adlercreutzia and 
   Alistipes spp., and an increase in Streptococcus spp.
Lee, et al.[66] Male diabetic mice An increased abundance of Akkermansia muciniphila
Yang, et al.[73] Rat model of T2DM Complementary effects on the main beneficial bacteria
Kusunoki, et al.[74] 36 patients with T2DM-related An increase in the prevalence of balance-regulating bacteria and SCFA-producing 
  diabetic nephropathy bacteria
van Bommel, et al.[75] 44 T2DM patients No significant effects

CVD: cardiovascular disease; LPS: lipopolysaccharide; SCFA: short-chain fatty acids.
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